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Abstract

In this paper, we investigate rigid-ruling folding motions of crease-rule patterns, that is, conjugacy-
preserving isometries of developable semi-discrete conjugate nets. We derive two conditions for the
rigid-ruling foldability of pairs of curves and consider two applications. First, we introduce compu-
tations that enable the sequential construction of rigid-ruling foldable crease-rule patterns. Second,
we examine combinations of planar and constant fold-angle creases. In particular, we show that con-
stant fold-angle creases are only compatible with other constant fold-angle creases, and we provide
a characterization of rigid-ruling foldable combinations of planar and constant fold-angle creases.

1 Introduction

Structures made from sheet materials offer advantages, such as cost-effective fabrication while enabling
the creation of intricate forms by joining sheets along curved boundaries. Beyond their artistic appeal,
such structures have found applications in architectural shells [27], innovative furniture design [40], and
hydrodynamic ship hulls [29]. A notable subclass, curved-crease origami, arises when sheet material is
folded along curves. Initially explored in artistic contexts [6}/18], curved-crease origami shapes have since
evolved into an active field of both theoretical investigation [4] and applied research of transformable
structures [37].

Mathematically, shapes obtained by bending a sheet of paper are (parts of) developable surfaces. As
a subclass of ruled surfaces, developable surfaces are composed of families of straight lines, called rulings,
and are characterized by a constant tangent plane along each ruling [28]. Compositions of developable
patches joined along curved boundaries constitute semi-discrete structures that can approximate curved
geometries, see for example [36] and references therein. Curved-crease origami comprises a notable
subclass, in which the common boundary curve, the curved crease, has the (geometric) property that,
when unrolled into the plane with respect to either incident patch, it coincides, while the two patches lie
on opposite sides of the developed curve.

In recent years, compositions of developable patches have been studied both in the theory of curved-
crease origami and in semi-discrete differential geometry, leading to two terminologies for same concepts.
In the following, we provide a brief overview of these perspectives.

Curved-crease origami. In the study of curved-crease origami, a fundamental research question
is whether a given folded shape “exists” mathematically, that is, whether it can be described using
developable patches [3]. This question is nontrivial, since determining the rulings is itself challenging.
One approach is to start from the 2D configuration prescribed by creases and rulings, and ask whether the
given crease-rule pattern admits a folded state, that is, a semi-discrete structure composed of developable
patches that is isometric to the 2D configuration with the same rulings (and not planar).

In general, given two 2D developable patches with prescribed rulings, joining them along a smooth
boundary curve typically results in a one-parameter family of corresponding 3D configurations [21]. A
smooth variation between these configurations can be interpreted as a folding motion that preserves the
rulings. In contrast, joining three patches with prescribed rulings is usually overconstrained, and a 3D
configuration may not exist. Nevertheless, there are examples in which three or more ruled 2D patches
admit a continuous family of 3D states, allowing the angles between the patches to vary smoothly. We
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(a) Rigid-ruling folding motion of a crease-rule pattern. (b) Discrete, semi-discrete, and smooth conjugate nets.

Figure 1: Ilustration of concepts discussed in Section

refer to this type of motion as a rigid-ruling (folding) motion. Analogous considerations apply to the
special case of curved-crease origami, where crease-rule patterns involving two or more creases admit a
rigid-ruling folding motion only in special cases (see Figure .

Semi-discrete differential geometry. Smooth conjugate nets are surface parametrizations charac-
terized by the property that their mixed partial derivatives are tangent to the surface (or, in some
cases, vanish). Intuitively, such parametrizations satisfy the following geometric property: the rulings of
the envelope of tangent planes along one family of parameter curves are tangent to the corresponding
curves of the incident second family. The discrete counterparts of conjugate nets are regular planar
quad (PQ) meshes, where the edges of the polylines correspond to the conjugate directions |26, §27]
(see Figure . One-directional refinement of PQ meshes yields compositions of developable strips, see
for example [19, §1.3], which correspond to semi-discrete conjugate nets, with ruling polylines and com-
mon boundary curves representing the conjugate families. Curved-crease origami shapes form a special
subclass of semi-discrete conjugate nets, namely those that are globally developable.

Classical differential geometry investigates isometric deformations of smooth surfaces, with those that
preserve conjugate nets forming a special subclass. As early as 1860, Bianchi formulated a necessary and
sufficient condition for a smooth surface to admit an isometric deformation that maps conjugate nets to
conjugate nets [9, §141].

In the discrete setting, isometric deformations of conjugate nets correspond to flexible (or rigidly-
foldable) PQ meshes, that is, meshes that can be continuously transformed by a change of the dihedral
angles only. Building on previous work, such as [35], only recently have all 3 x 3 flexible quad meshes been
fully classified by Izmestiev [12]. While a quad mesh is flexible if and only if all of its 3 x 3 submeshes
are flexible |33, Theorem 3.2], assembling such submeshes into larger flexible quad meshes is nontrivial,
and to date only special cases have been investigated. A complete characterization of all flexible quad
meshes remains an open problem.

A folding motion of a combination of developable patches that preserves the rulings is an isometry that
also preserves conjugate nets. Consequently, rigid-ruling folding motions of compositions of developable
patches correspond to conjugate-net-preserving isometries of semi-discrete conjugate nets. This raises
the question of which combinations of curves and rulings are compatible, and whether these semi-discrete
configurations admit smooth or fully discrete counterparts. To address this, we review relevant results
on subclasses of conjugate nets:

e T-nets: A prominent class of conjugate nets are those whose conjugate families lie in mutually per-
pendicular planes, known as T-nets. Their discrete counterparts, called T-hedra, are characterized
by trapezoidal faces, which give this class its name. Discrete T-nets were first observed by Graf
and Sauer [32] to be flexible, and recent work has provided smooth analogs as well as synthetic
descriptions of the smooth and semi-discrete cases |13]. Recently, T-hedra have been applied in
the design of tubular structures [34].

In the context of origami, creases that remain planar during the folding motion form a special class
and can be generated by reflection. Nawratil [23] characterizes all pairs of polylines on discrete
cylinders and cones that remain planar under deformation. A consequence of this study is, that
not all rigidly foldable discrete planar crease patterns correspond to T-hedra. In contrast, in the
semi-discrete case, Mundilova and Nawratil [22] show that every combination of planar creases
admitting a rigid-ruling folding motion are semi-discrete T-nets.

e V-nets: Another prominent subclass of conjugate nets that are simultaneously geodesic nets was
first studied by Voss in 1889 and is now known as V-nets [39]. In the discrete setting, the geodesic



condition translates into the equality of opposite sector angles at each vertex |31, Sec. 12.2]. Dis-
crete V-nets are closely related to anti-V-nets, which are also studied in the context of flat-foldable
origami with valence four vertices. Due to their applications in transformable structures, both
discrete V-nets and anti-V-nets have been the subject of research, resulting in several design ap-
proaches; see for example [17] and the references therein.

A sequence of flat-foldable developable vertices connected along their major crease maintains a
constant dihedral angle. Consequently, in the semi-discrete setting, anti-V-nets correspond to
constant fold-angle creases. Inspired by David Huffman’s artistic exploration of conical curved-
creases, Demaine et al. [5] characterize all constant-fold angle creases between cylinders and cones.
In subsequent work, Demaine et al. [7] show that such patterns admit two types of discretization
that are rigidly foldable and highlight conditions under which these discretizations are even flat-
foldable. A publication on smooth, discrete, and semi-discrete V-nets is currently being prepared
by Izmestiev et al. [14].

e (Cone-nets: The discrete conic-crease patterns are examples of discrete cone-nets, specifically, PQ
meshes composed of strips of cylinders or cones. Moreover, they represent a subclass of azial cone-
nets, as their cone apices (or points at infinity in the case of cylinders) remain collinear throughout
the folding motion. Recently, building on this work, Nawratil [24] characterizes all flexible axial
discrete cone-nets.

Contributions. In this paper, we study the rigid-ruling foldability of regular crease-rule patterns, that
is, crease patterns consisting of a sequence of patches separated by creases. Equivalently, this amounts
to investigating conjugate-net-preserving isometries of globally developable semi-discrete conjugate nets.
After reviewing our notation and introducing preliminary results in Section [2| the contributions of this
paper are as follows:

(1) In Section we identify conditions under which a given crease-rule pattern with two creases admits
a rigid-ruling folding motion.

(2) In Section we show how to successively construct rigid-ruling foldable crease patterns by adding
curved creases and patches in a way that preserves the rigid-ruling folding motion.

(3) Finally, in Section we analyze the rigid-ruling folding compatibility of two special classes of
creases: planar creases and constant fold-angle creases.

With this work, our goal is to make a step towards understanding conjugate-net preserving isometries
of semi-discrete conjugate-nets.

2 Preliminaries

In this section, we establish the foundation for our analysis of compositions of developable surfaces. We
adopt the notation introduced in [21,/22], building on the work of |4l[5]. For further background on ruled
and developable surfaces, we refer the reader to [28].

2.1 Developable surfaces

In this paper, we parametrize developable surfaces as ruled surfaces while imposing an additional con-
straint to ensure developability.

2.1.1 Ruled surfaces

Recall that a ruled surface can be parametrized as
S(t,u) = X(t) + uR (1), (1)

where X(¢) : T — R3 is a curve, the directriz, and R(t) : T — S? are unit-length vectors, the so-called
ruling directions. Without loss of generality, we assume T = [0, tmax], for some tpay > 0, and u € R.
Additionally, for the surface to be C?, we require both X(t) and R(t) to be C2.

We assume that the curve is equipped with an orthonormal frame and we describe the location of
the ruling vectors with respect to this frame. To ensure that the curve’s frame is continuous, we specify
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Figure 2: Illustration of the notation of a developable patch and its development.

the curve X (t) through three functions: K(¢) : T — R, 7(¢) : T — R, and s(t) : T — R. These functions
define X(¢) up to Euclidean motion through the Frenet-Serret formulas, that is, X'(t) = s'(¢)T(¢), where

T (¢) 0 K@® 0\ [T®)
N'@) | =s't)| =K@ 0 )| [N ], (2)
B(t) 0o —rt) o ) \B@®

see |25]. Here we require that the K (t), 7(¢), and s'(¢) are continuous, and s'(t) > 0.

Note that we allow K (t) to take negative values. Moreover, isolated points or intervals where K (t) = 0
or 7(t) = 0 still yield a continuous frame (T(¢),N(¢), B(t)). The described frame is not a Frenet-frame.
However, at parameter values where the Frenet-frame is defined, the computed frame coincides with the
Frenet-frame, differing only by sign. Moreover, K (t) corresponds to the curvature of the directrix up to
sign, while 7(¢) is the torsion of the directrix when defined. In the following, we refer to K(t) as the
(signed) curvature and to 7(t) as the torsion. Furthermore, s(t) denotes the arc-length of the directrix,
and s'(t) represents the parametrization speed.

To determine the ruling directions with respect to the frame (T(¢),N(¢),B(t)), we introduce two
additional angular functions: the inclination angle p(t) : T — R and the ruling angle 6(t) : T — R; see
Figure [2|

The inclination angle ¢(t) encodes the angle between a one-parameter family of planes II(¢), which
contain the curve’s tangent vectors T(¢). Those planes will correspond to the tangent planes if the ruled
surface is developable. We express the normal vector P(¢) of TI(t) as

P(t) = cosp(t) B(t) + sinp(t) N(¢), (3)

resulting in o(t) being the signed angle between P(t) and B(t).
Within the plane II(t), we locate the ruling direction using the ruling angle as

R(t) = cosO(t) T(t) +sind(t) (P(t) x T(t))
= cos(t) T(t) + sin(t) (cos p(t) N(t) — sinp(t) B(t)) . (4)
For the ruling direction to be C2, we require both 6(¢) and ¢(t) to be C?. Note that for the subsequent
computations, C* would be sufficient.
2.1.2 Developability condition

It is known that the ruled surface in Equation is developable if for all rulings, the tangent planes
along points on a ruling are the same [28]. This condition can be expressed as

det (X/(t), R(t), R(t)) = 0. (5)
Using Equation and Equation for ruled surfaces with planar directrices, this condition simplifies

to
¢'(t)
s'(t)

= 7(t) + K(t)sin(t) cot 6(1); (6)



see [21] for more details.

Given a developable surface S(t,u), we will parametrize its flattened configuration, the development,
by s(t,u) = x(t) + ur(t), where x(t) : T — R? represents the 2D counterpart of the directrix X(¢), and
r(t) : T — S* the unit-length 2D ruling direction; see Figure

To obtain the developed directrix x(t), we consider the geodesic curvature of X(t) as a curve on
S(t,u), that is, the curvature of the projection of X(¢) on II(t) at parameter ¢,

k(t) = K(t) cos p(t). (7)

We obtain x(t) by determining the 2D curve with signed curvature k(t) and parametrization speed s(t).
This amounts in solving the system of differential equations x'(t) = s'(¢)t(t), where

(rtl((%) = (—/S(t) kg)) (:1%) - (8)

As isometry preserves angles on surfaces, particularly the oriented angle between T(¢) and R(t) or
P(t) x T(t), the developed ruling directions read

r(t) = cosO(t) t(t) +sinb(t) n(t).

2.1.3 Ruling curvature

In subsequent sections, we will consider bent configurations S(¢,u) of a planar developable patch s(¢, u).
To show that two such deformations are identical, we calculate the curvature that indicates the surface’s
bend perpendicular to the rulings, following the methodology of [45]. This ruling curvature is the normal
curvature at a given point on an arc-length parametrized curve perpendicular to the rulings at parameter

t, expressed as:
1

V(t) = s'(t)K(t)sin go(t)m = s'(t)k(t) tan @(t)m )

We make note of the following property, which directly follows form Equation @, Equation , and
Equation @

Lemma 1. The ruling curvature determines the bend configuration of a developed patch up to Euclidean
motion.

2.2 Folded states of crease-rule patterns

In this section, we discuss the differential and algebraic equations that govern the computation of folded
states of a given crease-rule pattern.

2.2.1 Geometry of a single crease

We begin by reviewing the well-known computation of folded states for a single crease, where the rulings
of the two adjacent patches are prescribed [4}10].

A curved crease, denoted as x(t), locally divides the sheet into two sides, a “left” and “right” side
with respect to the orthonormal frame of x(t),

sp(t,u) = x(t) + urg(t) and sr(t,u) = x(t) — urg(t),

where r;(t) = cosf;(t) t(t) + siné;(t) n(t) for j € {L, R} are the (left-side) ruling directions and
(t(t),n(¢t)) the local orthonormal frame; see Figure [3| Let k(t) and s(t) denote the curvature and arc-
length of the crease curve x(t).

To compute the corresponding 3D configuration, that is,

Sr(t,u) = X(t) + uRL(t) and Sr(t,u) = X(t) — uRg(t),

we determine the curvature K (t) and torsion 7(¢) of the 3D crease and the inclination angles ¢y (¢) and
©r(t) of the adjacent surfaces.

Since Equation (|7)) applies to both inclination angles, it follows that cos ¢, (t) = cos ¢ (t). The inter-
esting “folded” case occurs when ¢(t) = ¢r(t) = —pgr(t) [10]. In this case, we consider the developability
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Figure 3: Illustration of the notation introduced in Section

condition (Equation (6)) for both incident surfaces and Equation (7). Solving for ¢'(t), 7(t), and K(t)
results in

o'(t) = %s’(t)k(t) (cot Or(t) + cot O (t)) tan p(t), (10)
T(t) = %s’(t)k(t) (cot Or(t) — cot O (1)) tan (1), (11)
K(t) = CO’:E;)(t). (12)

The function 2¢(t) quantifies the deviation from a configuration in which the tangent planes are
aligned, indicating a state where the paper is locally uncreased. Consequently, ¢(t) represents half of
the fold-angle. Additionally, it is important to note that ¢(t) is determined by the differential equation
in Equation up to the initial value. In fact, the inclination can be obtained as

o(t) = arcsin (coe-fot fmdf) , where ft) = %s’(t)k(t) (cot O, (t) + cot Ogr(t)) (13)

and ¢y = sin p(0) is an appropriate initial value. For ¢(t) to be real-valued for all ¢t € T, we require

.
lco] < Cmax = min e~ Jo $@®dr,

Upon successful computation of the inclination angle ¢(t), the curvature and torsion of X(t) follow from
Equation and Equation (12).

The 3D configuration is then obtained by solving the Frenet-Serret equations in Equation and
constructing the corresponding 3D ruling directions Ry (¢) and Rg(t) (Equation ) for appropriate
inclination and ruling anglesﬂ

There are the following two special cases, corresponding to the cases where the ruling angles are equal
or sum up to m:

e Planar creases: If 01,(t) = Or(t), it follows from Equation that the torsion vanishes, 7(¢) = 0,
and the crease becomes a planar crease. In general, a “maximally folded state” occurs when one
tangent plane becomes perpendicular to the plane containing the curve.

o Constant fold-angle creases: If 0r(t) = m — Or(t), it follows from Equation that the first
derivative of the inclination angle, ¢’(¢) = 0, vanishes, indicating that the crease maintains a
constant inclination angle and, consequently, a constant fold-angle along the crease. Since ¢(t) =
arcsin(co) is real-valued for ¢g € [—%,%], the full folding motion exists. In the discrete case,
this crease corresponds to a sequence of flat-foldable vertices with the same assignment along
the discretized crease. The fully flat-folded state of the smooth configuration corresponds to a

completely “rolled-up” configuration.

In addition, we regard creases along straight segments as both planar and constant fold-angle creases,
regardless of their incident rulings.

ISince typically cmax > 0, there generally exists a one-parameter family of suitable fold-angles in the vicinity of the flat
state.
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2.2.2 Crease-rule patterns

The goal of this paper is to analyze conjugate-net—preserving isometries of conjugate nets obtained
through one-directional refinement of PQ meshes. While artistic curved-crease origami designs may
arrange creases in many different ways, we restrict our attention to those formed by a sequential ar-
rangement.

Definition 1. A regular crease-rule pattern P is a sequence of non-intersecting planar smooth crease
curves x1(t), ..., x,(t) : T — R2, together with two boundary curves xo(t),x,+1(t) : T — R2, such that

e Fach x;(t) lies to the left of x;—1(t), for alli <n+1, and
e The interiors of the patches
pir(t,u) = (1 —w)x;(t) + ux;+1(t) with (t,u) € T x (0,1),

are disjoint, their rulings are not aligned with the tangents of the boundary curves, and the boundary
curves are free of singularities of the patches.

In the following, we will denote by s;(t) the curve’s x;(t) arc-lengths and by k;(¢) their curvatures.
The (left-side) ruling directions of patches bounded by two creases are

Moreover, the ruling angles of the patches that are bounded by two creases can then be obtained from

(14)

0;,5(t) = arctan (t;;(t) - ri;(t), n4;(t) - vi5(t)) » (15)

where j € {L, R}. Here, t;(t) represents the unit tangent, while n;(¢) stands for the (left-side) normal
of x;(t), respectively.

2.2.3 Computation of folded states of crease-rule patterns

We continue by discussing the computation of folded states of regular crease-rule pattern P, consisting
of the n folded crease curves X;(¢), determined by the corresponding curvatures K;(t), torsions 7;(t),
and left and right inclination angles ;1 (t) and ¢;r(t).

Before we proceed, we conduct a similar simplification as in the single crease case. Specifically, as
the curvatures and inclination angles are related by

ki(t) = K;(t) cos i (t) and ki(t) = K;(t) cos pir(t), (16)



we have that cosp;r(t) = cosp;g(t). Analogously to the single crease, we focus on the case where
©i(t) = wir(t) = —p;r(t). This simplification leaves us with 3n unknowns, namely the 3D curvatures
K;(t), torsions 7;(t), and inclination angles ¢;(t).

A valid folded state satisfies the following algebraic and differential constraints:

e For every crease, the left and right patches must be developable,
i (t) = 0587 ()T (t) + s3(t)ki (t) tan p;(t) cot 0;;(t), (17)
where o;;, = +1 and o;g = —1. This results in 2n constraints.

e Additionally, for each crease, we relate the curvatures and inclination angles by
ki(t) = K;(t) cos i (t), (18)
resulting in another n constraints.

e Finally, for every pair of overlapping surfaces, we require them to have the same ruling curvatures.
This requirement leads to the following n — 1 constraints:

1 1

s;()ki(t) tan ¢; (ﬂm = —8i41(t)kit1(t) tan ¢i+1(f)m~ (19)

Note that a solution to these 4n — 1 constraints provides a sufficient condition for computing a folded
state: the crease curves can be determined sequentially and are guaranteed to fit together by isometry (see
Lemma. The boundary curves are obtained by propagating distances along the boundary developables
from the outermost crease curves.

Definition 2. We say a regular crease-rule pattern P is said to admit a folded state if there exist
functions K;(t), 7:(t), and p;(t), such that

e Fquation and Equation are satisfied for every crease, and
e Fquation 18 satisfied for every interior patch.

A folded state is non-trivial, if no inclination angle is identically zero.
We say a crease-rule pattern has a rigid-ruling folding motion, if it has a continuous family of non-
trivial folded states.

Ultimately, for a regular crease-rule pattern with n creases, the system involves 4n — 1 constraints
imposed on 3n variables. Thus, for n > 1, it is typically overconstrained. This is due to each pair of
adjacent patches acting as a one-degree-of-freedom mechanism, which may fail to produce a congruent
configuration of the shared surface. Strategies for introducing additional degrees of freedom into this
system are discussed in |21} Part I].

Remark on vanishing curvatures. Note that the definition of a crease-rule pattern does not ex-
plicitly forbid crease curves containing points or segments of vanishing curvature. Intuitively, in regions
where k;(t), a folded configuration corresponds to two flat regions joined along the crease. To avoid case
distinctions, the following discussion focuses only on crease patterns whose crease curvatures vanish only
at isolated points.

For Equation to be satisfied at such parameter values without introducing singularities, the
curvatures of creases connected by a ruling should also vanish. Accordingly, we restrict our attention to
patterns whose inflection points are connected by rulings:

Definition 3. Let P be a regular crease-rule pattern with at least one crease, and let Ty C T denote the
set of isolated parameter values for which ki(t) = 0. We call P a candidate crease-rule pattern, if for
all other creases in the pattern, ki(t) = 0 implies k;(t) = 0.

While we conjecture that crease-rule patterns which are not candidate patterns do not admit a rigid-
ruling motion, we omit the corresponding technical details here. Our main result in Section [3] provides
two necessary and sufficient conditions for a candidate crease-rule pattern to admit a rigid-ruling folding
motion.



2.3 Property-preserving operations on crease-rule patterns

To conclude the preliminary discussions, we describe two operations on crease-rule patterns that in-
volve parallelism. Both operations preserve the existence of folded states, rigid-ruling foldability of the
patterns, and the types of curved creases (planar or constant fold-angle). Although both operations
naturally extend to general semi-discrete conjugate nets, see [21], in this paper we focus exclusively on
the globally developable case.

2.3.1 Preliminaries

We begin by reviewing the properties and computational methods of curves with parallel frames.

Curves with parallel frames. Recall that curves with parallel frames (and same orientation of vec-
tors) at corresponding parameter values satisfy the same Frenet—Serret formulas [11},/30]. Consequently,
the quantities of a 3D curve X(t) with curvature K (t), torsion 7(¢), and arc-length s(¢) relate to the
curvature K (t), torsion 7(t), and arc-length 3(t) of a curve with parallel frame by

sSH)K () =38{)K(t) and s'(t)r(t) = §(t)7(t),

and the curves are related through integration of the tangent vectors with different parametrization
speeds, that is, X/(t) = §'(t)T(t) and X'(t) = & (t)T(t), where T(t) is the common tangent vector.
Equivalently, the curves relate by s'(£)X'(t) = & (t)X'(t).

Similarly, in the two-dimensional case, the curvatures k(t) and k(t) of two parallel curves x(t) and
x(t) with arc-lengths §(¢) and x(t) relate by

s/ (t)k(t) = 3 (1)k(t),

and we have that x'(¢) = s'(t)t(¢) and X'(t) = §(t)t(¢), where t(¢) is the common tangent vector.

Curves on developable patches with parallel frames. Among the many curves with parallel
frames, the following crease-rule pattern modifications make use of finding curves with parallel frames
on a given developable surface. In what follows, we briefly discuss the corresponding computation.

Let s(t,u) = x(t) + ur(t) be a 2D patch and x;(¢) a 2D curve. Our goal is to locate a curve X(¢) on
s(t,u) such that its tangents at corresponding parameters ¢ are parallel to the tangents of x;(¢t). While
the following computation requires |x}(¢) x r(¢)| # 0 for all ¢t € T, we do not assume that the curve x;(t)
lies on s(t, u).

To compute the unknown curve x(t), we assume that it can be parametrized by X(t) = x(t) +1(t)r(t),
where [(t) is an initially unknown function. Let n;(¢) denote the normal vector of the curve x;(t).
Requiring the derivative X'(t) to be orthogonal to n.(¢), that is, X'(¢) - n;(¢) = 0, implies

ny(t) - x'(t)
() - x(t)

This condition is an explicit first-order differential equation for the length function I(t), solved by

w0 ) X0
n(®)rt) = @

Given a reasonable combination of developable patch, curve, and initial value [(0), we therefore expect
to find a local solution for I(¢).

t
I(t) = eJo 4(©) gg (l(O) _|_/ e fo"a(f)dfb(n)dn> ,  where a(t)=-—

0

2.3.2 Combescure-transformations of crease-rule patterns

Recall that two smooth or discrete conjugate nets are said to be related by a Combescure transformation
if, at each point, the corresponding partial derivatives or edges are parallel |2,[8l[16].

In this section, we describe how to compute a semi-discrete Combescure transformation P of a crease-
rule pattern P and highlight key properties of the transformed pattern. This operation is particularly
useful for simplifying casework, as used in [22] or later in Section

In the following, suppose we are given a crease-rule pattern P containing n creases x;(¢t) and their
incident rulings, a continuous function py(¢) > 0, and n + 1 positive initial lengths (1o(0),...,1,(0)).



To initialize the construction, we use the function py(¢) to determine the boundary curve Xq(t) of P
parallel to xo(t). Specifically, we set

50(t) = po(t)sy(t)

and obtain the first curve X (t) from integrating X (t) = po(t)x((t), or equivalently X{(t) = 5((¢)to(t),
where to(¢) is the tangent vector of x¢(t). Furthermore, we define So 1, = Xo(t) + uro,r(t), where rg 1,(t)
are the rulings of the patch between x¢(t) and x1(t).

While there is a crease x;(t) to the left of the last integrated curve corresponding to curve x;_1(t), for
a specified initial distance 1;_1(0), we find a curve x;(t) on §;_1 (¢, u) such that its tangents are parallel
to x;(t), see Section Upon a successful computation, we again set 8§, 1,(¢, u) = X;(t) + ur; .(t).

For reasonable input, this procedure describes the sequential construction of a Combescure-transformed
crease-rule pattern P. We make note of the following property that follows directly from the definition
of planar and constant fold-angle creases and parallelism:

Lemma 2. If x;(t) is a planar or a constant fold-angle crease, then X;(t) has the same property.

Next, we show that a Combescure relationship between two crease patterns induces a corresponding
Combescure relationship between their folded states:

Lemma 3. If crease-rule pattern P has a folded state F, then its Combescure transform P also has a
folded state F.

Proof. We prove this statement by constructing a valid folded state of P from a folded state P.

First, we obtain Xg(t) by integrating X} (t) = po(t)Xp(t), and define Sq 1 (t,u) = Xo(t) + uRo, 1 (t)
using the ruling direction Rg 1, (¢) of the patch between Xo(¢) and X1 (¢) in the folded state of P. While
there is a curve to the left of a previously computed curve X;_1(t), we locate X;(t) as a curve on
Si—1,0(t,u), and set S; (¢, u) = X;(t) + uR,; (1).

Note that due to isometry, the angles between rulings and tangents are unchanged, and the curves
X, (t) and X;(t) have parallel tangents, and consequently frames. It follows that there exist positive
continuous functions p;(t) that relate the quantities associated with the curves X;(t) and X;(t) by

51(15) = pi(t)si(t), Ri(t) = pi(t)Ki(t), and ﬁ(t) = pi(t)Ti(t).
Additionally, again due to isometry, we have that
ki(t) = pi(t)ka(t).

We conclude that the constructed semi-discrete structure is a valid folded state of P, since the
quantities K;(t), 7;(t), and ¢;(¢t) satisfying the conditions in Definition [2] imply that the corresponding
quantities K;(t), 7;(t), and @;(t) also satisfy them.

Finally, we note that, by construction, both the curve tangents and rulings of F and F are parallel,
and therefore the folded states relate by a Combescure transformation. O

Finally, we conclude that the folding properties of the crease-rule patterns P and P are the same:

Corollary 1. The crease pattern P admits a folded state if and only if P does. Consequently, P admits
a rigid-ruling folding motion if and only if P admits one.

2.3.3 Adding parallel pleats to crease-rule patterns

Next, we review a Combescure-inspired method that uses parallelism to add creases to a crease-rule
pattern [15[38], while again preserving its folding properties, see Figure

In the following, let P be a crease-rule pattern and [,,(0) and /,,4+1(0) two initial values. We discuss
the generation of a crease pattern P containing the curves x¢(t),...,x,(t) of P with one additional
crease, X,,+1(t) together with a new left boundary %X, 42(t).

Specifically, using the method described in Section @ and the first initial value [,,(0), we identify a
curve Xp,41(t) on s, (f,u) whose tangents are parallel to the tangents of x,,(¢) at points connected by a
ruling, and set §p41,1(t,u) = Xp41(t) +urp_1,2(t). Additionally, using the second initial value I,,41(0),
we identify the left-most boundary as a curve parallel to x,,41(t) on §,41,1(t, u).

Note that this construction ensures not only that the curves x,,(t) and X,1(¢) are parallel, but also
that the rulings incident to these curves are parallel. Specifically, r,, 41 1(t) = r, g(t) and r,41 r(t) =
r,.r(t). A direct consequence is the following:

10



Figure 5: Illustration of a rigid-ruling folding motion of a crease-rule pattern with tangent-parallel
creases [21].

Lemma 4. If the crease x,,(t) is a planar or a constant fold-angle crease, $o0 is Xp41(t).
Next, with similar arguments to before, we show that:

Lemma 5. If the crease-rule pattern P has a folded state, then P also has a folded state. Consequently,
the existence of a rigid-ruling folding motion of P implies the existence of a rigid-ruling folding motion

of P.

Proof. Similar to the previous section, we can use isometry to construct a 3D configuration corresponding
to the crease-rule pattern P.

To show that this is a folded state, we confirm that the equations in Definition [2| are satisfied.
Specifically, it follows from the definition of X,41(¢), that the curves x,(¢) and x,41(¢) parametrization
speeds s/, (t) and &, (), as well as their curvatures k, () and k,1(t), differ by a factor p(t) > 0, namely,

Spy1(t) = p(t)s,, (1) and kni1(t) = rkn(t),

and similarly, the quantities of the 3D curves relate by

Koer(t) = p(t) (1) and Fasr(t) = —7u(1).

Additionally, we have that 6,11 1,(t) = 0, r(t) and 6,41, r(t) = 0,,L(F).
We observe that if quantities associated with P satisfy Definition 2] so will the quantities associated

3 Rigid-Ruling Folding Conditions for Crease-Rule Patterns

Given the over-constrained nature of the system discussed in Section [2:2.3] a generic crease-rule pattern
does not admit a folded state, and the existence of a rigid-ruling folding motion constitutes a special
case. In this section, we present our novel results on the rigid-ruling foldability of regular crease-rule
patterns.

3.1 Local conditions for rigid-ruling foldability

It is established that a regular PQ-mesh (not necessarily developable) is rigidly foldable if and only
if every (3 x 3)-submesh is rigidly foldable [33]. Similarly, for a crease-rule pattern with n > creases,
the question of whether it admits a rigid-ruling folding motion can be reduced to a sequence of smaller
problems:

Lemma 6. In a reqular crease-rule pattern, if each pair of adjacent creases and their incident surfaces
can undergo a rigid-ruling folding motion, then the entire structure will likewise be capable of such a
motion.

Proof. This deduction follows from the property that each pair of adjacent surfaces forms a one-degree-
of-freedom mechanism with a family of folded states near the planar configuration. Hence, the ability to
combine these mechanisms pairwise is sufficient to guarantee that the entire structure can be assembled.

O

11



3.2 Rigid-ruling folding compatibility of two creases

For a regular crease-rule pattern, Lemma [ implies that it suffices to examine pairs of rigid-ruling
foldable creases. In this section, we present our main result, which extends previous work on the rigid-
ruling compatibility of two planar creases [22], and establishes two conditions under which a crease-rule
pattern P with two creases is rigidly foldable. Throughout this section, we continue using the notation
introduced in Section 2l

3.2.1 Preparations
Recall from Section that the folded states of a pair of patches joined along a curved crease x;(t)
are determined by their inclination angles

p;(t) = arcsin (cieli(t)) (20)
for
S L. - Ay
Li(t) = f/ s5(0)ki(t) (cot 0;1,(£) + cot 0;(£)) dt, (21)
0
where ¢; and cp are two constants satisfying

|ei] < Cimax = mine 5 ®),
teT
We substitute the representation of the inclination angle from Equation into the compatibility
condition between two patches with the same ruling curvature, given in Equation . This yields

Z;léte)f:((:)) tan (arcsin (clell (t))) = _m tan (arcsin (62612(t))) , (22)

Using the trigonometric equality tan(arcsin(z)) = (1 — 22)~2, we rewrite this condition as

crelr® coel2(®)

Fi(t)——— = B (t) ——r 23
1) 1_2e2hd 2(1) 1— 22k (23)
where 0 (ks (1)
S 1 So 2
Fy(t) = 2127 d Fr(t) i = =——~——7~.
1( ) sin 91L(t) an 2( ) sin 02R(t)

For a rigid-ruling folding motion to exist, we require that this equation is satisfied for a one-parameter
family of pairs of initial values (c1,c2), starting at the flat-configuration with (e1,¢2) = (0,0). In the
following, we assume that ci,cy # 0.

3.2.2 Compatibility during folding motion

With these preparations in place, we present the following theorem.

Theorem 1 (Compatibility of creases). A candidate crease-rule pattern has a rigid-ruling folding motion
if and only if for all non-zero curvature parameters t € T\Tp,

Ft) B 5 o
and
By(t)°I1(t) = Fa(t)*I5(t).- (25)

are satisfied.

Proof. Our proof consists of three steps. In the first step, we focus on parameter values ¢t € T\T; and
derive two constraints that ensure Equation is satisfied for a one-parameter family of values ¢; and
cs. In the second step, we show that these two constraints imply a smooth connection between the
initial values ¢; and co. Finally, we argue the existence of a rigid-ruling folding motion by considering
all parameter values t € T'.

12



Step 1 (Derivation of constraints). In the following, we assume that ¢t € T\Tj, and thus F;(t) # 0.
Solving Equation for the square of co yields

2= A(t)c%
27 B(t)E +CO(t)
where
A(t) = Fy(t)%e2r @), B(t) = (Fi(t)? — Fy(t)?) 21V 22() C(t) = Fy(t)%e?20,

Note that the denominator cannot vanish for all ¢, which is equivalent to B(t) = C(¢t) = 0, since our
assumptions imply that C(t) # 0.
The value of ¢y is constant in ¢, if and only if its differentiation w.r.t. parameter t is zero, that is,
d (A'(W)B(t) — A@W)B'(t)) ¢t + A'()C(t) — A()C'(1)

_a o 2
0=z (B(t)2 + C(1))2 -

This equation must be satisfied for all suitable values of ¢;. This is the case if and only if the coefficients
of ¢} and ¢? in the numerator vanish, leading to the following two constraints:

0= A'(t)B(t) — A(t)B'(t) and 0=A'(t)C(t) — At)C'(t). (26)

First, we simplify Equation (right), which results in Equation . Next, we consider the
equation which results from adding e2*(®) times the right equation of Equation to its left one:

A'(t) (B(t) + 2D (t)C(t)) — A(t) (B’(t) + 2l <f>0/(t)) = 0. (27)

Simplifications of this equation result in Equation .

Note that it follows from Equation that I (¢t) = 0 if any only if I5(¢) = 0. Since constant fold-
angle creases x;(t) are characterized by I/(t) = 0, it follows that if one crease has a constant fold-angle,
for the crease-rule pattern to be rigid-ruling foldable, then the other must as well.

Step 2 (Smooth connection between initial values). Next, we show that ¢y smoothly depends on
c1 and that there exists a motion that starts in a configuration where both values are zero. We continue
assuming that ¢ € T\Tp.

e Constant fold-angle creases: First, we consider the case where both creases have constant fold-
angle, that is, I;(t) = Io(t) = 0 for all ¢ € T. Integrating Equation , we obtain

Fi(t)

= C )
R(t) 7

where c3 > 0 is a constant determined by the geometry of the crease-rule pattern.
To establish a relationship between ¢; and co, we consider Equation , which simplifies to
c c
C3 - = : (28)

N

It follows that
2 6%63 (29)
5= ——5 "5
2T 1-3(1-)
Consequently, the constant cs is only real-valued if 1 —¢3(1 —¢) > 0. This is the case either when
c3>1,orci<landc? <1/(1-c3).
In these two cases, back-substitution of the two solutions for ¢y of Equation in Equation (28,

results in
C1C3

V1=ci(1 —c?),)7

which shows a smooth relationship between the constants and thus implies the existence of a smooth
folding motion that starts from the flat state.

Cy = —

These consideration establish a maximal attainable fold-angle based on the crease-rule pattern.
Namely, if ¢3 < 1, we have that ¢; € (—¢1 max, C1,max) Where ¢1 max = 1/4/1 — c3, otherwise, ¢ is
not not constrained and a folding motion exists for all ¢;.
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e Not constant fold-angle creases: Next, we consider the case where I1(t) = I}(t) = 0 only for isolated
values.

Integrating Equation yields
0= Il(t) — Ig(t) + thl(t) — lnFQ(t) -+ const,
which implies
Fy (t)ell ®)
Fy (t)eIQ(t)
where c3 > 0 is a constant that depends on the given crease-rule pattern.

In the following, we assume ¢ € T with I/(t) # 0, and consider the case where I/(¢t) = 0 futher
below. Combining Equation with Equation results in

= Cs, (30)

L(1)e* ) = EI(0)e?"=0, (31)
and another integration step yields
e = 20220 4 ) (32)

where ¢4 is a constant that again is determined by the crease pattern, specifically,

Fi(t)?
— 2]1(t) 1 _ 1
“=c ( F2<t>2> '

To find the connection between values of ¢; and cs, we substitute the derived relations into the
compatibility condition. Specifically, inserting Equation in Equation simplifies to

o VI- A& o)

C3 —
c1 1 — c3e2l2(1)

)

and solving for ¢3 yields
2.2
2 C1C3
5= ———. 33
21— c3ey (33)
Again, ¢y is real-valued, if ¢4 < 0, or ¢4 > 0 and ¢ < 1/cy. If this is the case, we have that
C1C3

V1—cley

is a smooth relationship between the constants c¢; and ¢z, and hence there exists a smooth folding
motion.

Cy = —

We extend these considerations for isolated values where I;(¢) = I1(t) = 0, and note that Equa-
tion implies that ¢4, = 1 — 3, which establishes the connection to the constant fold-angle
case.

This concludes our argumentation that the two constraints are also sufficient for the existence of a
rigid-ruling motion for values of ¢ that do not correspond to inflection points of the creases in the pattern.

Step 3 (Parameter values with zero curvature). Finally, we extend our considerations to all
parameter-values ¢t € T'. It follows from Equation that at parameter values where k;(t) = ka(t) = 0,
the compatibility condition is trivially satisfied and does not pose a constraint on the connection on ¢y
and cy. Their values are therefore determined solely by the curved region. This concludes the proof.

O

For the classification of combinations of planar and constant fold-angle creases in Section it is
more convenient to work with the integrated forms of the constraints in Theorem [I] rather than the
constraints themselves. We therefore note the following:
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Corollary 2. A candidate crease-rule pattern has a rigid-ruling folding motion if and only if for all
non-zero curvature parameters t € T\Ty, Equation and Equation for some c3 > 0 and c4 are
satisfied.

We highlight the following property of constant fold-angle creases:

Lemma 7. In a candidate crease-rule pattern that admits a rigid-ruling motion and contains at least
one constant fold-angle crease, all creases are constant fold-angle creases.

Proof. For points with non-vanishing curvature, this statement follows directly from Equation . On
non-empty intervals where the curvature vanishes, the adjacent creases maintain a constant fold angle as
they are folded along a straight line. For isolated parameter values with constant fold angle, Equation
does not apply. Nevertheless, the constant fold-angle property extends from one crease to the next due
to the assumed continuity of the creases and ruling directions. O

4 Rigid-Ruling Foldable Crease-Rule Patterns

Theorem [I]and Corollary [2| provide tools for determining whether a candidate crease-rule pattern admits
a rigid-ruling folding motion. However, applying these results directly to the design of such patterns is
less straightforward. In this section, we present two applications of the previous results that are suitable
for design and gaining a better understanding.

4.1 Preliminaries

The two applications presented in this section focus on rigid-ruling foldable patterns composed of three
patches. In the first application, we begin with a crease-rule pattern consisting of a single crease and
append a patch along a curved crease that satisfies rigid-ruling foldability. In the second, we classify
pairs of special crease types that form rigid-ruling foldable combinations.

In both applications, the approach relies on a case analysis of the central patch according to the
different types of developables. Recall that the rulings of a developable surface are either locally parallel,
concurrent at a point, or tangent to a space curve. Consequently, any developable surface can be
decomposed into cylindrical, conical, or tangent developable patches.

Following the approach of Sauer [31], we simplify the case analysis by employing a Combescure trans-
formation of crease-rule patterns to convert central tangent developable patches into conical ones. Since
Combescure transformations preserve the folding properties of crease-rule patterns, this simplification
does not affect the analysis.

As preparation, we set up parametrizations of crease-rule patterns whose central patch is either
cylindrical or conical, and express the quantities appearing in Theorem [I| and Corollary [2} We continue
to employ the notation of Section |2 but simplify the common ruling direction r1y(t) = rag(t) by r(t).

Cylinders. In the case where the central patch is a cylinder, we assume, without loss of generality,
that

xi(t) = (¢,0) + L;(t)r(t) for r(t) = (0,1),

where [;(t) are two initially unknown C? length functions such that 4 (¢) < la(t).
Using the descriptions in Section we compute

SOk (0) = 1430

The ruling angles of the central patch simplify to

— arccos L an = arccos &
O1.(t) = a ( 1+l’1(t)2> d O2r(t) = ( 1+z'2(t)2>’
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and we have that

o L)
f@(t) - \/iqu7§(fj§7

- RO,
() = (cot Oar,(t) + 15(t)) lg’(t).

2(1+105(1)%)

If x;(t) is a planar crease, then the expressions in Equation simplify to

Li(t) = %log (1 + l;(t)Q) and ©;(t) = arcsin (c“ /1 + l;(t)2> , (35)

where ¢y and ¢y are appropriate constants.

Cones. In the case where the central patch is a cone, we assume, without loss of generality, that
x;(t) = v+ 1;(¢t) (cost, —sint), where r(t) = (cost,—sint),

and [;(t) are two initially unknown C? length functions such that Iy (¢) < la(t).
Using the description in Section we compute

! fz(t)
sk (0) = ~ 2108,
where
ei(t) = Li(t)* + 15(t)?,
fit) = Li(#)* + 265(1)* = LI (1)
The ruling angles of the central patch simplify to
= arccos h®) an = arccos ()
01r(t) = ( el(t)> d O2r(t) ( €2(t)> )
and we have that
fi(t)
F’L = T
(t) li(t) ei(t)
() = %(l’l(t) 14 (£) cot By (1)) ll({;i’?@) (36)
oL vt () L0
I5(t) = 5 (5(8) +1a(t) cot s (1) =25 "

If x;(t) is a planar crease, the expression in Equation simplify to

Li(t) = %log (Zl(gl) and ©;i(t) = arcsin (Ci Vl;(zt()t)> ’

where ¢, and ¢, are appropriate constants.
Finally, note that the solutions to the differential equation f;(t) = 0 are of the form

Lit) =

co
cos(t +c1)’

and correspond to straight lines on a cone.
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4.2 Sequential construction of rigid-ruling foldable crease-rule patterns

Appending a crease to a folded structure is a useful technique for increasing design complexity with
additional pleats [1,/21]. In general, for a given a developable patch, almost any suitable incident curve
can become a curved crease, with the appended patch being found as the envelope of tangent planes
reflected across the curve’s osculating plane. However, if the original surface is part of a rigidly foldable
structure, in general, appending a new patch causes the structure to lose this property.

In this section, we discuss how to append a patch along a curved crease to a crease-rule pattern while
preserving its rigid-ruling foldability, thereby providing a method for generating rigid-ruling foldable
crease-rule patterns. Although a special case of such curves, those that have parallel tangents, was
presented in Section [2.3.3] we show that in general these curves and corresponding patches can be
specified using three parameters.

In the following, we consider the three cases for the central patch sq,1(¢,u) (cylindrical, conical, or
tangent developable) separately, and show how to find a crease x3(¢) and the rulings of the incident
surface so 1 (t,u) such that the combined crease-rule pattern has a rigid-ruling folding motion.

4.2.1 Appending a patch to a central cylinder

In this section, we follow the notation of Section [I.1] for the cylindrical case and assume that the crease
x1 (t), defined by the length function I;(¢), is not a straight line, implying 1} (¢) # 0. Using Theorem
we aim to find x2(t), characterized by l3(¢) and the rulings of the third patch, 62y (¢).
First, we consider the second constraint in Theorem 1| and observe that substituting the expressions
from Equation into Equation results in
15(t) / /
cot B (t) = ) (cot O1r(t) +13(1)) — I5(1) (37)
1
Next, we consider the first constraint in Theorem (I} Using Equation , we simplify the following
expression

F@) _ LOEE 5@
Fi(t) 1+ ()
Using this expression and Equation , Equation simplifies to

4 <(cot913—l’1)l'1’ (cot Oy + I)IL2 2014 21/{/)

2 1+ Wa+p) 1+

"o__
Iy =

Note that this is an explicit, non-linear third-order differential equation for the length function Is(t).
Consequently, a local solution generally depends on three parameters, corresponding to the initial values
of Io(t), 15(t), and 15(t). Upon successful computation, this determines x(t) and, using Equation (37),
the ruling directions of its left patch. We conclude:

Corollary 3. For a given crease incident to a cylinder, there is, in general, a three-parameter family of
curves on the cylinder and incident rulings that result in a crease-rule pattern with a rigid-ruling folding
motion.

4.2.2 Appending a patch to a central cone

Next, we consider the case of the central patch being a cone. We follow the notation of Section for
the conical case and assume that the crease x1(t), defined by the length function 4 (¢), is not a straight
line, implying f;(t) # 0. Again, using Theorem [1} we aim to find x5(¢), characterized by l2(t) and the
rulings of the third patch, sy, (t).

Again, we first consider the second constraint in Theorem [1| and observe that substituting the ex-
pressions from Equation in Equation results in

1
cot 02[, = ﬁ <—lgl/2 + % (lllll + l% cot 91}%)) (38)
2

Next, we consider the first constraint in Theorem (1} Using Equation , we simplify the following
expression

FI(t) _ =21 + AL + 2UB1 — A+ BU2 — (31 + 1))

17171

Fi(t) L+ U2 (F + 207 = LY
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Using this expression and Equation , Equation simplifies to

20, 2l fi Lf3
"= f2 et I+l t0 Jr 2

L lo + ( 1 heo lR) lie l%€2f1 +
N 20420y + 317 + 21,1 N Alylh + 6l'2l’2’>

f1 fo

Note that this is again an explicit, non-linear third-order differential equation for the length func-
tion I3(t). Consequently, a local solution generally depends on three parameters, corresponding to the
initial values of I3(t), I5(¢), and I5(t). Upon successful computation, this determines xs(¢) and, using
Equation , the ruling directions of its left patch. We conclude:

20 (L 1) 20( +15)
€1 €9

27 9

Corollary 4. For a given crease incident to a cone, there is, in general, a three-parameter family of
curves on the cone and incident rulings that result in a crease-rule pattern with a rigid-ruling folding
motion.

4.2.3 Appending a patch to a central tangent developable

Finally, we briefly discuss the case where the central surface is a tangent developable. As highlighted in
Section this case can be locally reduced to a conical case discussed in Section [1.2:2] Specifically, we
can transform the crease-rule pattern into a configuration where the surface §1,(¢,u) corresponding to
s11(t,u) is a cone using parallelism discussed in Section With the method from Section we
identify the curves on §1,(t,u) that have a rigid ruling folding motion. These compatible curves can be
transformed into curves on sy (¢, u), resulting in crease-rule patterns with general surfaces that have a
rigid-ruling folding motion.

Note that no additional curves x5 (t) can exist, as every compatible curve on s; (¢, u) would correspond
to an unclaimed curve on §;7,(¢,u). Similar to before we conclude:

Corollary 5. For a given crease incident to a tangent developable patch, there is, in general, a three-
parameter family of curves on the tangent developable patch and incident rulings that result in a crease-
rule pattern with a rigid-ruling folding motion.

4.3 Rigid-ruling folding combinations of two planar or constant fold-angle
creases

In this section, we explore rigid-ruling folding compatibilities of pairs of creases that are either planar or
have a constant fold angle.

The combination of two rigid-ruling foldable planar creases was studied by Mundilova and Nawratil
in |22] and forms the basis of our work here. They find that rigid-ruling foldable combinations of two
planar creases are limited: when two creases are combined along a cylindrical patch, they may be scaled
versions of each other. In all other cases, the only rigid-ruling folding compatible creases are the tangent-
parallel curves discussed in Section [2.3.3

In contrast, Lemmal[7]implies that constant fold-angle creases are compatible only with other constant
fold-angle creases, which, for a given crease, can form a family of compatible creases with up to three
parameters, as discussed in Section [4.2] raising the question of whether this is indeed the case.

In the following section, we extend the work of Mundilova and Nawratil [22] and use Corollary [2| to
study the implications of Lemma [7] by showing:

e For the combination of two constant fold-angle creases, we simplify the differential equations derived
in Section [3]and confirm that, for a given constant fold-angle crease, the second compatible crease
has three degrees of freedom in Section [£.3.1]

e When combining a constant fold-angle crease with a planar crease, Lemmal[7]implies that the planar
crease must also be a constant fold-angle crease. Consequently, it corresponds to a curve that is
perpendicular to the rulings of the developable surface. In Section [4.3.2] we confirm this finding.

We focus on cases where the creases are not straight, having only isolated points where I(t) = 0 in
the case of cylinders, or f;(¢) = 0 in the case of cones.
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4.3.1 Combination of two constant fold-angle creases

Given a crease pattern with two constant fold-angle creases, we note that both I(t) = I2(t) = 0.
Consequently, one of the two conditions in Corollary [2| Equation , is trivially satisfied, while the
second, Equation (30)), simplifies to F (t) = c3Fa(t).

In the following, we further simplify this constraint based on the type of the central patch..

Cylindrical Case. Using the expressions in Section for the case of a cylindrical patch, Equa-
tion simplifies to
e I5(t)

=c
11002 1+t GE)?

Using integration, we therefore conclude

/ /
arctanh L = c3 arctanh A + ¢4,
1+ I7(1)? 1+ 15(t)?

where ¢4 is some constant.
Given one of the curves, say x3(t) in terms of l5(t), we can therefore compute a compatible curve
from

t n /
L1i(t)=c5 :I:/ tanh(h(t)) dt, where h(t) = czarctanh (lZ(t)> + c4.
0 h2(

\/1 — tanh?(h(f)) 1+ 15(t)?

In conclusion, note that for a given curve x5(t), in general, we find a three-parameter family of
compatible curves corresponding to the constants cs3, c4, and cs.

Conical case. On the other hand, using the expression in Section [£.I] for the case of a central conical
patch, Equation [30| simplifies to
) PO i 2(t)

LOVe @) la(t)/ea(?)

or equivalently,

Mgy _ lll (t)z _ec l(t)* + lll(t)Q 2 1 (\2 _ 1
(t)=h(t)+2 ARG N O L (la(t)? + 25(t)* — L2(1)5 (1)) -

While we were not able to find a closed-form solution, we expect to be able find a three-parameter family
of compatible curves l5(t), where two parameters correspond to the initial values of I5(t) and I5(t) and
cg is another parameter.

4.3.2 Combination of a planar and a constant fold-angle crease

Finally, we turn our attention to crease patterns consisting of a planar crease x;(t) and a crease with
constant fold angle x2(t). We examine how the two conditions in Corollary [2simplify in this case. Note
that, since x5 (t) has a constant fold angle, I5(t) = 0.

Cylindrical case. Using the corresponding expressions in Section for a central cylindrical patch,

Equation and Equation simplify to
l5(t)

NSENAGE

The second condition implies that I{(¢) = 0, resulting in the planar crease being straight. Consequently,
there are no non-trivial combinations in this case.

I7(t) =c3 and L) =o.
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Conical case. Using the corresponding expressions in Section for a central conical patch, Equa-
tion and Equation simplify to

A _ R and B A =0.

ll(t)S ZQ (t) 62(t)

Assuming that x;(t) is not a straight line, that is f1(¢) # 0 except for isolated values, we conclude
that 1 (t) = 0 and hence {1 (t) = const. Consequently, the planar crease x;(t) is a curve perpendicular to
the rulings of the cone, and therefore also a constant fold-angle crease.

Any folded configuration of a cone along a planar crease perpendicular to its rulings results in a right
circular cone. Curves of constant fold angle on right circular cones have been studied in connection with
pseudogeodesic curves, that is, curves on surfaces whose osculating planes maintain a constant angle with
the incident tangent planes, by Walter Wunderlich [41, V], where they are described via a polarization
of slope lines on rotational quadrics. Parametrizations of the corresponding four types of curves in their
developed form are given in [41, VIII] or [20, Section 3.2].

Tangent developables. Extending the result from the conical case to tangent developables preserves
the property that planar curves are those with constant fold angle, that is, perpendicular to the rulings,
whereas the second type corresponds to curves parallel to pseudogeodesics on rotational cones.

5 Conclusion and Future Work

In conclusion, this paper studies crease-rule patterns that have a rigid-ruling motion, resulting in new
findings on the conjugate-net preserving isometries of globally developable conjugate nets.

We derived two conditions for rigid-ruling foldability and applied them to two scenarios. First, we
showed that introducing a crease into a rigid-ruling foldable pattern generally introduces three degrees of
freedom. Second, we investigated combinations of planar and constant fold-angle creases. In particular,
we demonstrated that constant fold-angle creases are only compatible with other constant fold-angle
creases. Moreover, among those that are both constant fold-angle and planar, compatibility requires
that they be perpendicular to the rulings of the patch. This yields a complete characterization of
compatible planar and constant fold-angle creases.

In future work, we aim to move beyond the globally developable setting and characterize all rigid-
ruling—compatible combinations of developable patches. We also seek to identify and describe parallels
between the smooth and discrete cases, ultimately building a bridge between smooth and discrete differ-
ential geometry and deepening our understanding of their similarities and differences.
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